Question Q1.23

Consider the two repeated vector products $\overrightarrow{\boldsymbol{A}} \times(\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{C}})$ and $(\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}) \times \overrightarrow{\boldsymbol{C}}$. Give an example that illustrates the general rule that these two vector products do not have the same magnitude or direction. Can you choose the vectors $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}$, and $\overrightarrow{\boldsymbol{C}}$ such that these two vector products are equal? If so, give an example.

Solution

Choose

$$
\begin{aligned}
& \mathbf{A}=\langle 1,1,1\rangle \\
& \mathbf{B}=\langle 1,1,2\rangle \\
& \mathbf{C}=\langle 1,1,3\rangle .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\langle 1,1,-2\rangle \\
& (\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=\langle-3,-3,2\rangle .
\end{aligned}
$$

These vectors do not have the same magnitude

$$
\begin{aligned}
|\mathbf{A} \times(\mathbf{B} \times \mathbf{C})| & =\sqrt{1^{2}+1^{2}+(-2)^{2}}=\sqrt{6} \\
|(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}| & =\sqrt{(-3)^{2}+(-3)^{2}+2^{2}}=\sqrt{22}
\end{aligned}
$$

or direction. Choose $\mathbf{A}=\mathbf{0}$ and $\mathbf{B}=\mathbf{0}$ and $\mathbf{C}=\mathbf{0}$ to make $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$.

